
CT42 DESIGN & ANALYSIS OF ALGORITHMS ALCCS-FEB 2014

© IETE 1

Q.1 a. Solve the recurrence relation T (n) = 27 T (n/3) + Θ(n3 lg n)
Answer:

 nlog
3

 27 = n3 vs. n3 lg n
 Therefore T (n) = O (n3 lg2 n)

 b. Given the following code fragment, what is its Big-O running time?
 i = n;
 while i > 0
 k = k + 2;
 i = i / 2;

Answer:
 O(log n)

c. Show the ordering of vertices produced by topological sort in the
following graph. What is time complexity of topological sort?

Answer:

 Topological sort - Order of vertices: V1, V2, V4, V3, V5 or V1, V2, V4, V5, V3
 Time complexity: Θ (V + E)

d. Given a sorted array and a value x. Suggest O(n) algorithm to find two

values in the array whose sum is equal to x.
Answer:

 We keep two indexes one at start and 2nd one at end, and apply following
algo. Let the array be sorted in descending order.

if(A[1st_index] + A[2nd_index] < x)
 2nd_index--;
else if (A[1st_index] + A[2nd_index] > x)
 1st_index++;
else
 print 1st_index,2nd_index;
do this until 2nd_index > 1st_index

 e. Suppose that the root of the Red-Black tree is red. If we make it black,
does the tree remain a Red Black tree?

Answer:
If we color the root of a relaxed red-black tree black but make no other changes,
the resulting tree is a red-black tree. Not even any black-heights change.

CT42 DESIGN & ANALYSIS OF ALGORITHMS ALCCS-FEB 2014

© IETE 2

f. What are the conditions for a problem to be solved using Dynamic
Programming.

Answer:
 Optimal substructure and Overlapping sub problems

g. Explain intractable problem with an example.
Answer:
 Some problems are intractable as they grow large; we are unable to solve them in

reasonable time. e.g. subset-sum problem, TSP etc.

Q.2
a. Give an efficient algorithm that determines whether or not a given

directed graph G = (V, E) contains a cycle. Discuss its time complexity.
Answer:
 Function iscycle(G)
 NV=0; // NV is number of vertices visited
 select a vertex that has in degree zero
 NV = NV + 1
 delete the vertex and all the edges emanating from it from the graph
 if NV ≠ V[G] then return “ cycle is there”
 else return “ no cycle is there”

 Time complexity: In case of Adjacency Matrix O(V2).
In case of Adjacency List O(V + E).

b. Suppose we wish to search a linked list of length n, where each element
contains a key k along with a hash value h(k). Each key is a long
character string. How might we take advantage of the hash values when
searching the list for an element with a given key?

Answer:
 Searching a list of length n where each element contains a long key k and a small
 hash value h(k) can be optimized in the following way: Comparing the keys
 should be done first comparing the hash values and if successful then comparing
 the keys.

Q.3 a. What is the difference between the binary-search tree property and the

heap property? Can the heap property be used to print out the keys of an
n-node tree in sorted order in O(n) time? Explain how or why not.

Answer:
In a heap, a node’s key is ≥ both of its children’s keys. In a binary search tree, a node’s
key is ≥ its left child’s key, but ≤ its right child’s key. The heap property, unlike the
binary-searth-tree property, doesn’t help print the nodes in sorted order because it doesn’t
tell which subtree of a node contains the element to print before that node. In a heap, the
largest element smaller than the node could be in either subtree.

CT42 DESIGN & ANALYSIS OF ALGORITHMS ALCCS-FEB 2014

© IETE 3

Note that if the heap property could be used to print the keys in sorted order in O(n) time,
we would have an O(n)-time algorithm for sorting, because building the heap takes only
O(n) time. But we know that a comparison sort must take Ω(n lg n) time.

b. Consider a B-tree with degree m. i.e. the number of children c, of any

internal node (except the root) is such that m–1 ≤ c ≤ 2m–1. Derive the
maximum and minimum number of records in the leaf nodes for such a
B-tree with height h (h ≥ 1). (Assume that the root of a tree is at height 0).

Answer:
 The root which is at height 0 can have minimum two children. Each of these

children can have minimum of m children each of which can have a minimum
of m children. Thus the minimum number of records in leaf nodes with height
h is 2×mh – 1.

 Similarly the maximum number of records in leaf nodes with height h is 2(2m – 1)h – 1.
Q.5

 a. Consider the problem of "Making Change". Coins available are:
 dollars (100 cents)
 quarters (25 cents)
 dimes (10 cents)
 nickels (5 cents)
 pennies (1 cent)

Design an algorithm using greedy approach to make a change of a given
amount using the smallest possible number of coins.

Answer:

 Informal Algorithm
• Start with nothing.
• at every stage without passing the given amount.

o add the largest to the coins already chosen.
Formal Algorithm
Make change for n units using the least possible number of coins.
MAKE-CHANGE (n)
 C ← {100, 25, 10, 5, 1} // constant.
 Sol ← {}; // set that will hold the solution set.
 Sum ← 0 sum of item in solution set
 WHILE sum not = n
 x = largest item in set C such that sum + x ≤ n
 IF no such item THEN
 RETURN "No Solution"
 S ← S {value of x}
 sum ← sum + x
 RETURN S

CT42 DESIGN & ANALYSIS OF ALGORITHMS ALCCS-FEB 2014

© IETE 4

 b. Write a program to merge two arrays in sorted order, so that if an
integer is in both the arrays it gets added into the final array only once.

Answer:

Algorithm Union(arr1[], arr2[]):
For union of two arrays, follow the following merge procedure.
1) Use two index variables i and j, initial values i = 0, j = 0
2) If arr1[i] is smaller than arr2[j] then print arr1[i] and increment i.
3) If arr1[i] is greater than arr2[j] then print arr2[j] and increment j.
4) If both are same then print any of them and increment both i and j.
5) Print remaining elements of the larger array.

Q.6 a. How can the output of the Floyd-Warshall algorithm be used to detect
the presence of a negative-weight cycle?

Answer:
 Here are two ways to detect negative-weight cycles:

(a) Check the main-diagonal entries of the result matrix for a negative value.
There is a negative weight cycle if and only if dii

 (n) < 0 for some vertex i :
• dii

 (n) is a path weight from i to itself; so if it is negative, there is a path from i
to itself (i.e., a cycle), with negative weight.
• If there is a negative-weight cycle, consider the one with the fewest vertices.
• If it has just one vertex, then some wii < 0, so dii starts out negative, and since
d values are never increased, it is also negative when the algorithm terminates.
• If it has at least two vertices, let k be the highest-numbered vertex in the
cycle, and let i be some other vertex in the cycle. dik

(k−1) and dki
(k−1) have

correct shortest-path weights, because they are not based on negative weight
cycles. (Neither dik

(k−1) nor dki
(k−1) can include k as an intermediate vertex, and i

and k are on the negative-weight cycle with the fewest vertices.) Since i → k
→ i is a negative-weight cycle, the sum of those two weights is negative, so d ii

(k) will be set to a negative value.
Since d values are never increased, it is also negative when the algorithm

 terminates.
In fact, it suffices to check whether dii

 (n−1) < 0 for some vertex i . Here’s why.
A negative-weight cycle containing vertex i either contains vertex n or it does
not. If it does not, then clearly dii

 (n−1) < 0. If the negative-weight cycle contains
vertex n, then consider dnn

 (n−1). This value must be negative, since the cycle,
starting and ending at vertex n, does not include vertex n as an intermediate
vertex.

(b) Alternatively, one could just run the normal FLOYD-WARSHALL algorithm
one extra iteration to see if any of the d values change. If there are negative
cycles, then some shortest-path cost will be cheaper. If there are no such
cycles, then no d values will change because the algorithm gives the correct
shortest paths.

CT42 DESIGN & ANALYSIS OF ALGORITHMS ALCCS-FEB 2014

© IETE 5

Text Book

Introduction to algorithms- T.M. Cormen, C.E. Leiserson, R.L. Stein, MIT Press, 3rd

Edition, 2009

