
CT42              DESIGN & ANALYSIS OF ALGORITHMS ALCCS-FEB 2014 
 

© IETE                                                                                                                                 1 

Q.1  a.  Solve the recurrence relation T (n) = 27 T (n/3) + Θ(n3 lg n) 
Answer: 

  nlog
3

 27 = n3 vs. n3 lg n 
  Therefore T (n) = O (n3 lg2 n) 
 

   b.  Given the following code fragment, what is its Big-O running time? 
    i = n; 
    while i > 0 
       k = k + 2; 
       i = i / 2; 

Answer: 
               O(log n) 
 

c. Show the ordering of vertices produced by topological sort in the 
following graph. What is time complexity of topological sort? 

 
Answer: 

 Topological sort - Order of vertices: V1, V2, V4, V3, V5 or V1, V2, V4, V5, V3   
  Time complexity: Θ (V + E) 

 
d. Given a sorted array and a value x. Suggest O(n)  algorithm to find two 

values in the array whose sum is equal to x. 
Answer: 

      We keep two indexes one at start and 2nd one at end, and apply following            
algo. Let the array be sorted in descending order. 

if(A[1st_index] + A[2nd_index] < x) 
    2nd_index--; 
else if (A[1st_index] + A[2nd_index] > x) 
    1st_index++; 
else 
     print 1st_index,2nd_index; 
do this until 2nd_index > 1st_index 

 
 

 e. Suppose that the root of the Red-Black tree is red. If we make it black, 
does the tree remain a Red Black tree? 

Answer: 
If we color the root of a relaxed red-black tree black but make no other changes, 
the resulting tree is a red-black tree. Not even any black-heights change. 
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f. What are the conditions for a problem to be solved using Dynamic 
Programming. 

Answer: 
  Optimal substructure and Overlapping sub problems 
 

 

g. Explain intractable problem with an example.     
Answer:      
  Some problems are intractable as they grow large; we are unable to solve them in 

reasonable time. e.g. subset-sum problem, TSP etc.                                         
 

Q.2  
a. Give an efficient algorithm that determines whether or not a given 

directed graph G = (V, E) contains a cycle. Discuss its time complexity. 
Answer: 
  Function  iscycle(G) 
    NV=0; // NV is number of vertices visited 
    select a vertex that has in degree zero 
    NV = NV + 1 
     delete the vertex and all the edges emanating from it from the graph 
      if NV ≠ V[G] then return “ cycle is there” 
      else return “ no cycle is there” 
 

 Time complexity:  In case of Adjacency Matrix O(V2).  
In case of Adjacency List O(V + E). 
   

b. Suppose we wish to search a linked list of length n, where each element 
contains a     key k along with a hash value h(k). Each key is a long 
character string. How might we take advantage of the hash values when 
searching the list for an element with a given key? 

Answer: 
   Searching a list of length n where each element contains a long key k and a small 
   hash value h(k) can be optimized in the following way: Comparing the keys  
   should be done first comparing the hash values and if successful then comparing  
   the keys. 
  
Q.3  a. What is the difference between the binary-search tree property and the 

heap property? Can the heap property be used to print out the keys of an 
n-node tree in sorted order in O(n) time? Explain how or why not. 

Answer: 
In a heap, a node’s key is ≥ both of its children’s keys. In a binary search tree, a node’s 
key is ≥ its left child’s key, but ≤ its right child’s key. The heap property, unlike the 
binary-searth-tree property, doesn’t help print the nodes in sorted order because it doesn’t 
tell which subtree of a node contains the element to print before that node. In a heap, the 
largest element smaller than the node could be in either subtree. 
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Note that if the heap property could be used to print the keys in sorted order in O(n) time, 
we would have an O(n)-time algorithm for sorting, because building the heap takes only 
O(n) time. But we know that a comparison sort must take Ω(n lg n) time.            

 
b.  Consider a B-tree with degree m. i.e. the number of children c, of any 

internal node (except the root) is such that m–1  ≤ c ≤ 2m–1. Derive the 
maximum and minimum number of records in the leaf nodes for such a 
B-tree with height h (h ≥ 1). (Assume that the root of a tree is at height 0). 

Answer: 
   The root which is at height 0 can have minimum two children. Each of these 

children can have minimum of m children each of which can have a minimum 
of m children. Thus the minimum number of records in leaf nodes with height 
h is 2×mh – 1. 

                 Similarly the maximum number of records in leaf nodes with height h is 2(2m – 1)h – 1.                                                         
Q.5 

  a. Consider the problem of "Making Change". Coins available are: 
 dollars (100 cents) 
 quarters (25 cents) 
 dimes (10 cents) 
 nickels (5 cents) 
 pennies (1 cent) 

Design an algorithm using greedy approach to make a change of a given 
amount using the smallest possible number of coins.   

Answer: 

 Informal Algorithm 
• Start with nothing. 
• at every stage without passing the given amount. 

o add the largest to the coins already chosen. 
Formal Algorithm 
Make change for n units using the least possible number of coins. 
MAKE-CHANGE (n) 
        C ← {100, 25, 10, 5, 1}     // constant. 
        Sol ← {};                         // set that will hold the solution set. 
        Sum ← 0 sum of item in solution set 
        WHILE sum not = n 
            x = largest item in set C such that sum + x ≤ n 
            IF no such item THEN 
                RETURN    "No Solution" 
            S ← S {value of x} 
            sum ← sum + x 
        RETURN S   
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 b. Write a program to merge two arrays in sorted order, so that if an 
integer is in   both the arrays it gets added into the final array only once. 

Answer:  

Algorithm Union(arr1[], arr2[]): 
For union of two arrays, follow the following merge procedure. 
1) Use two index variables i and j, initial values i = 0, j = 0 
2) If arr1[i] is smaller than arr2[j] then print arr1[i] and increment i. 
3) If arr1[i] is greater than arr2[j] then print arr2[j] and increment j. 
4) If both are same then print any of them and increment both i and j. 
5) Print remaining elements of the larger array. 

Q.6    a. How can the output of the Floyd-Warshall algorithm be used to detect 
the presence of a negative-weight cycle? 

Answer: 
 Here are two ways to detect negative-weight cycles: 

(a)  Check the main-diagonal entries of the result matrix for a negative value. 
There is a negative weight cycle if and only if dii

 (n) < 0 for some vertex i : 
• dii

 (n) is a path weight from i to itself; so if it is negative, there is a path from i 
to itself (i.e., a cycle), with negative weight. 
• If there is a negative-weight cycle, consider the one with the fewest vertices. 
• If it has just one vertex, then some wii < 0, so dii starts out negative, and since 
d values are never increased, it is also negative when the algorithm terminates. 
• If it has at least two vertices, let k be the highest-numbered vertex in the 
cycle, and let i be some other vertex in the cycle. dik

(k−1) and dki
(k−1) have 

correct shortest-path weights, because they are not based on negative weight 
cycles. (Neither dik

(k−1) nor dki
(k−1) can include k as an intermediate vertex, and i 

and k are on the negative-weight cycle with the fewest vertices.)  Since i → k 
→ i is a negative-weight cycle, the sum of those two weights is negative, so d ii

 

(k) will be set to a negative value. 
Since d values are never increased, it is also negative when the algorithm  

      terminates. 
In fact, it suffices to check whether dii

 (n−1) < 0 for some vertex i . Here’s why. 
A negative-weight cycle containing vertex i either contains vertex n or it does 
not. If it does not, then clearly dii

 (n−1) < 0. If the negative-weight cycle contains 
vertex n, then consider dnn

 (n−1). This value must be negative, since the cycle, 
starting and ending at vertex n, does not include vertex n as an intermediate 
vertex.  

(b) Alternatively, one could just run the normal FLOYD-WARSHALL algorithm 
one extra iteration to see if any of the d values change. If there are negative 
cycles, then some shortest-path cost will be cheaper. If there are no such 
cycles, then no d values will change because the algorithm gives the correct 
shortest paths. 
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Text Book 

 
Introduction to algorithms- T.M. Cormen, C.E. Leiserson, R.L. Stein, MIT Press, 3rd 

Edition, 2009                                                                                            


